Want to contribute? Fork me on Codeberg.org!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
septadrop/src/Main.cpp

359 lines
8.2 KiB

#include <SFML/Graphics.hpp>
#include <SFML/Graphics/Color.hpp>
#include <SFML/Graphics/Font.hpp>
#include <SFML/Graphics/RectangleShape.hpp>
#include <SFML/System/Clock.hpp>
#include <SFML/System/Vector2.hpp>
#include <SFML/Window/Keyboard.hpp>
#include <iostream>
#include <string>
#define WINDOW_WIDTH 280
#define WINDOW_HEIGHT 400
#define GRID_WIDTH 14
#define GRID_HEIGHT 20
class TileType {
public:
static TileType white, red, green, blue, yellow, magenta, cyan;
sf::Color color;
TileType(sf::Color _color) {
color = _color;
}
};
TileType TileType::white = TileType(sf::Color::White);
TileType TileType::red = TileType(sf::Color::Red);
TileType TileType::green = TileType(sf::Color::Green);
TileType TileType::blue = TileType(sf::Color::Blue);
TileType TileType::yellow = TileType(sf::Color::Yellow);
TileType TileType::magenta = TileType(sf::Color::Magenta);
TileType TileType::cyan = TileType(sf::Color::Cyan);
class BlockType {
public:
static BlockType i, j, l, o, s, t, z;
static BlockType* list[];
static BlockType* random() {
return list[rand() % 7];
}
TileType* tile_type;
std::vector<std::vector<bool>> grid;
bool rotate;
BlockType(TileType* _tile_type, const std::vector<std::vector<bool>> _grid, bool _rotate = true) {
tile_type = _tile_type;
grid = _grid;
rotate = _rotate;
}
};
// https://gamedev.stackexchange.com/a/17978
BlockType BlockType::i(&TileType::white, {
{0, 0, 0, 0},
{1, 1, 1, 1},
{0, 0, 0, 0},
{0, 0, 0, 0}
});
BlockType BlockType::j(&TileType::red, {
{1, 0, 0},
{1, 1, 1},
{0, 0, 0}
});
BlockType BlockType::l(&TileType::green, {
{0, 0, 1},
{1, 1, 1},
{0, 0, 0}
});
BlockType BlockType::o(&TileType::blue, {
{1, 1},
{1, 1}
}, false);
BlockType BlockType::s(&TileType::yellow, {
{0, 1, 1},
{1, 1, 0},
{0, 0, 0}
});
BlockType BlockType::t(&TileType::magenta, {
{0, 1, 0},
{1, 1, 1},
{0, 0, 0}
});
BlockType BlockType::z(&TileType::cyan, {
{1, 1, 0},
{0, 1, 1},
{0, 0, 0}
});
BlockType* BlockType::list[] = {&i, &j, &l, &o, &s, &t, &z};
class Block {
public:
BlockType* type;
sf::Vector2i position;
int rotation_state;
Block() {
type = BlockType::random();
position = sf::Vector2i(GRID_WIDTH / 2 - type->grid[0].size() / 2, 0);
rotation_state = 0;
}
std::vector<sf::Vector2i> get_tiles() {
std::vector<sf::Vector2i>tiles = {};
for (int y = 0; y < type->grid.size(); y++) {
for (int x = 0; x < type->grid[y].size(); x++) {
if (!type->grid[y][x]) {
continue;
}
int rotated_x = x;
int rotated_y = y;
if (type->rotate) {
int center_x = type->grid[0].size() / 2;
int center_y = type->grid.size() / 2;
int offset_x = x - center_x;
int offset_y = y - center_y;
switch (rotation_state) {
case 0:
rotated_x = x;
rotated_y = y;
break;
case 1:
rotated_x = center_x + offset_y;
rotated_y = center_y - offset_x;
break;
case 2:
rotated_x = center_x - offset_x;
rotated_y = center_y - offset_y;
break;
case 3:
rotated_x = center_x - offset_y;
rotated_y = center_y + offset_x;
break;
default:
rotation_state %= 4;
}
}
int global_x = rotated_x + position.x;
int global_y = rotated_y + position.y;
tiles.push_back(sf::Vector2i(global_x, global_y));
}
}
return tiles;
}
};
int main()
{
srand(time(NULL));
sf::RenderWindow window(sf::VideoMode(WINDOW_WIDTH, WINDOW_HEIGHT), "elnutris");
Block block;
TileType* grid[GRID_HEIGHT][GRID_WIDTH] = { nullptr };
int shape_width = WINDOW_WIDTH / GRID_WIDTH;
int shape_height = WINDOW_HEIGHT / GRID_HEIGHT;
sf::RectangleShape shape(sf::Vector2f(shape_width, shape_height));
bool snap, rotate, move_left, move_right;
bool redraw = true;
sf::Clock update_clock;
sf::Clock move_clock;
int score = 0;
sf::Font font;
font.loadFromFile("../res/stripped.ttf");
sf::Text text;
text.setFont(font);
text.setString("0");
text.setCharacterSize(24);
text.setFillColor(sf::Color::White);
text.setPosition(8, 0);
while (window.isOpen())
{
sf::Event event;
while (window.pollEvent(event))
{
switch (event.type) {
case sf::Event::Closed:
window.close();
break;
case sf::Event::KeyPressed:
switch (event.key.code) {
case sf::Keyboard::Space:
snap = true;
break;
case sf::Keyboard::Up:
rotate = true;
break;
case sf::Keyboard::Left:
move_left = true;
break;
case sf::Keyboard::Right:
move_right = true;
break;
default:
break;
}
break;
default:
break;
}
}
bool is_update_frame = update_clock.getElapsedTime().asMilliseconds() > (sf::Keyboard::isKeyPressed(sf::Keyboard::Down) ? 125 : 250);
if (is_update_frame) {
update_clock.restart();
}
bool is_move_frame = move_clock.getElapsedTime().asMilliseconds() > 125;
if (is_move_frame) {
move_clock.restart();
}
// Rotation
if (rotate && is_move_frame) {
block.rotation_state++;
// Check to see if new rotation state is overlapping any tiles
for (auto tile : block.get_tiles()) {
if (tile.x <= 0 || tile.x >= GRID_WIDTH || grid[tile.y][tile.x]) {
block.rotation_state--;
redraw = true;
break;
}
}
rotate = false;
}
// Horizontal movement
if (is_move_frame) {
int movement = 0;
if (move_left || sf::Keyboard::isKeyPressed(sf::Keyboard::Key::Left)) {
movement--;
move_left = false;
}
if (move_right ||sf::Keyboard::isKeyPressed(sf::Keyboard::Key::Right)) {
movement++;
move_right = false;
}
bool obstructed = false;
if (movement != 0) {
for (auto tile : block.get_tiles()) {
if (tile.x + movement < 0 || tile.x + movement >= GRID_WIDTH || grid[tile.y][tile.x + movement]) {
obstructed = true;
goto after_movement_loop;
}
}
}
after_movement_loop:
if (!obstructed) {
block.position.x += movement;
redraw = true;
}
}
// Snapping
int snap_offset = 0;
while (true) {
for (auto tile : block.get_tiles()) {
int y = tile.y + snap_offset;
if (y == GRID_HEIGHT - 1 || grid[y + 1][tile.x] != nullptr) {
goto after_snap_loop;
}
}
snap_offset++;
}
after_snap_loop:
if (snap) {
block.position.y += snap_offset;
snap = false;
redraw = true;
}
// Drawing block and land checking
bool landed = false;
for (auto tile : block.get_tiles()) {
if (tile.y == GRID_HEIGHT - 1 || grid[tile.y + 1][tile.x] != nullptr) {
landed = true;
redraw = true;
break;
}
}
if (redraw) {
window.clear();
if (!landed) {
sf::Color ghost_color = block.type->tile_type->color;
ghost_color.a = 64;
for (auto tile : block.get_tiles()) {
int snap_y = tile.y + snap_offset;
shape.setFillColor(block.type->tile_type->color);
shape.setPosition(tile.x * shape_width, tile.y * shape_height);
window.draw(shape);
shape.setFillColor(ghost_color);
shape.setPosition(tile.x * shape_width, snap_y * shape_height);
window.draw(shape);
}
}
}
// Landing (transfering block to grid and reinitializing)
if (landed) {
for (auto tile : block.get_tiles()) {
grid[tile.y][tile.x] = block.type->tile_type;
}
// Check for completed rows
for (int y = 0; y < GRID_HEIGHT; y++) {
bool completed = true;
for (int x = 0; x < GRID_WIDTH; x++) {
if (!grid[y][x]) {
completed = false;
break;
}
}
if (!completed) {
continue;
}
for (int z = y - 1; z >= 0; z--) {
for (int x = 0; x < GRID_WIDTH; x++) {
grid[z + 1][x] = grid[z][x];
}
}
score++;
text.setString(std::to_string(score));
}
block = Block();
} else if(is_update_frame) {
block.position.y++;
}
if (!redraw) {
continue;
}
// Drawing grid
for (int y = 0; y < GRID_HEIGHT; y++) {
for (int x = 0; x < GRID_WIDTH; x++) {
auto tile_type = grid[y][x];
if (tile_type == nullptr) {
// If tile_type is a nullptr (no block), continue
continue;
}
shape.setFillColor(tile_type->color);
shape.setPosition(x * shape_width, y * shape_height);
window.draw(shape);
}
}
window.draw(text);
window.display();
redraw = false;
}
return 0;
}